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* Intro: Overview of Challenges and Approaches
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Data Analytics can improve resiliency in the Dynamic Grid

Changes in the modern Grid:
* Penetration of Renewables

* Storage devices Vision: .
* Loads becomes active (not controlled) Design Alg
learn gis

Challenges
* Strong fluctuations/uncertainty :
* Needs real-time observability, control Features:
* Millions of devices, many entities .

New (available) Solutions .

* Hardware: .

Smart meters, PMUs, micro-PMUs
» Software/New algorithms:
Machine Learning, loT
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 Technical Intro: Direct and Inverse Stochastic Problem
—Machine Learning for Grid Operations
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Grid should operate in spite of
uncertainty & fluctuations

uncertainty:
« Graph Layout (switching of lines) + other +/- variables (transformers)

- State Estimation (consumption & production)
« Deterministic static & dynamic models (e.g. relating s=(p,q) to v)
» Probabilistic (statistical) models =>

fluctuations: 5j = z v, (vj_vk)*
* Renewable generators (wind & solar) oy i

Power Flow Egs.
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Direct Deterministic Problem:
Power Flow (static/minutes)

Given:
« operational grid=graph, inductances/resistances }\ﬁ

 Injections/consumptions (for example) o .
Compute:
. . — ) vj—vk *
power flows over lines 5] z v]( Zie )
« voltages k~j
Power Flow Egs.
* phases
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Direct Stochastic Problem:
Power Flow (static/minutes)

Given:

« operational grid=graph, inductances/resistances

* Probability distribution (statistics) of injections/consumptions (for example)
-- samples are assumed drawn (from the probability distribution), e.g. i.i.d.

k
Vi—Vg
5= 0, v (*5)
] ] ij

k~j
Power Flow Egs.

Compute statistics of:
» power flows over lines

« voltages

* phases

joint & marginal probability distributions
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Data Algarithm Model

f(x)

Inverse Stochastic Problem:
Power Flow (static/minutes)

Given: 5j = vj v,-—vk
—

« eperateretr grid=graph, inductances/resistances K~j K

- snapshots/measurements of power flows, voltages, phases Power Flow Egs.

* parametrized representation for statistics of
injections/consumptions, e.g. Gaussian & white

Infer/Learn:
« parameters for statistics of the injection/consumption
« operational grid=graph

Sample/Predict:

« configurations of injection/consumption
=> direct problem (compute)
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Machine Learning for the Grid (atleast some part) =
Automatic Solution of the Inverse Grid Problem(s)

Wb
o)

Manv flavors:

static vs dynamic

. transmission vs distribution

. blind (black box) vs grid/physics informed

. samples vs moments (sufficiency)

. principal limits (IT) vs efficient algorithms
i ~ N

. ML for model reduction ] s ﬁg A

. individual devices vs ensemble learning B

|

5TV

[focus only on some of these "~"complexities” in the talk]
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* Machine Learning for Distribution Grid
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: : : : : : D. Deka, S. Backhaus, MC
Machine Learning for Distribution Grid arxiv:1502.07820, 1501.04131, +

Learn
e Switch statuses
* Load statistics, line impedances

Challenges
* Nodal Measurements (voltages)

* Missing Nodes P
POWER ansmisgn ‘ ‘ N

* Information limited to households @ Substation
' Load Nodes Generates electricity

Transports electnicity to
its final destination.

Key Ideas

e Operated Radial structure
* Linear-Coupled power flow model
* Graph Learning tricks

SUBSTATION
TRANSFORMER J
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) ) ) ) . ) D. Deka, S. Backhaus, MC
Machine Learning for Distribution Grid arxiv:-1502.07820, 1501.04131, +

Linear-Coupled power flow model: lPa, Q.

PatiQa = (0 is cdge Va€"* (Vae ™™ = Voe ™) /(Rap — i Xa)
abs “}ab
Vol 0, —0,=0 1 equivalent to \

LinDistFlow (Baran-Wu)

O, Vi
— —1l —1 L —1 -1
0=H xP—H pQ, V=H ,P+H Q
H MTRr1pm Slack Bus d
1/R —
\ ¥
reduced reduced it
Laplacian Incidence explicitly on trees
matrix matrix
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) ) ) ) i i D. Deka, S. Backhaus, MC
Machine Learning for Distribution Grid arxiv:-1502.07820, 1501.04131, +

Key ldea:
* Use variance of voltage diff. as edge weights

[qbab:E[(Va_uVa)_(%_MVb)P] A\ a \N\

* Minimal value outputs the nearest neighbor

¢ab < ¢ac

[
T

ra
n

- 1[12 1415
1 2

L

]

Learning Algorithm:

e Min spanning tree with variance of
voltage diff. as edge weights

-
£
T

—
T

--.-

Average relative error in learning operational edges
=
wn

L]
oF ------I--I-----1--*--‘--*--‘
30 40 60 80 00 120 140 160 180 200
number of measurement smaples

v" No other information needed
v' Low Complexity: O(ElogE)

v’ Can learn covariance of fluctuating loads
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D. Deka, S. Backhaus, MC

Machine Learning for Distribution Grid arxiv:1502.07820, 1501.04131, +
Learning with missing nodes:
* Missing nodes separated by 2 or more hops I
° . —_— a
Learning Algorithm: R S D
. . . . a = B =4 missing nodes
* Min spanning tree with available E’ 0.4, - $ 6 missing nodes
nodes -.g 0.3s} ‘,‘ i
o L *
» Starting from leaf, check missing node e 1
Eozsr %, ‘t‘ .
o “ u
Leaf Intermediate R RSN 1
5015) ‘. Ne, 0., .
% 0.1 ‘-." “"uﬁ"‘q - |
E “‘.‘*“"“-::i s‘.*v‘!—‘-‘*
é -

‘E{][} 400 500 800 1000 1200 1400 1600 1800 2000
number of measurement samples

a
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) ) ) ) i i D. Deka, S. Backhaus, MC
Machine Learning for Distribution Grid arxiv:-1502.07820, 1501.04131, +

Learning with missing nodes & reduced information: ’

* Missing nodes separated by 2 or more hops as

* Model reduction, ensemble (sampling distributions)

Extensions:

v’ Learn using end-node (household) data accounting for
v" mix of active (with control) & passive
v" dynamics of loads/motors and inverters
v' emergencies, e.g. FIDVR

v Learn 3 phase unbalanced networks

v Learn loopy grid graph

v" Coupling to other physical infrastructures
- gas/water distribution
o - thermal heating
v cities (Manhattan) e.g. extending the learning methodology
v’ rich exogenous correlations (loops to the more general “*physical flow” networks
representing non-grid knowledge)
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Recently Awarded GMLC: Slide 17
Topic 1.4.9 Integrated Multi Scale Data Analytics and Machine Learning for the Grid

Pls: Road Map of 1.4.9 (ML for distribution grids)
Emma Stewart (LBNL)
Michael Chertkov (LANL)

Problems/significance Testbeds

=
'% 2016-17 Grid Topology
NL involved: é e
LBNL,LANL, SNL, ORNL, LLNL, NREL, ANL g ¢
g Estimation < ™
* Platform 3 2 o
- development, E :
- data collection : - ;g/“
« ML and Data Analytics for Visibility £ D
« ML and Data Analytics for Resilience
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Integrating Distrib.-Level (stochastic) Loads in Frequency Control

Idea: Use distribution level Demand Response (DR), specifically ensemble of
Thermostatically Control Loads (TCL), to balance SO signal through Aggregator (A)

« Thousands of TCLs are aggregated

+  SO->Aggregator (A)->TCLs [top-> bottom] Results & Work in Progress:

* Aggregator is seen (from above) as a “virtual GEN” _ _ ) _
Goal of the study to answer the principal question: *  Builds on theory & simulation experience from
Nonequilibrium StatMech & Control

* Can A follow the SO’s real-time signal as an actual GEN? k _
« ... and do it under “social welfare” conditions [our novel approach]: * StochasElc/_PDE”/spectraI methods for analysis of
TCLs are controlled by the aggregator in a least intrusive way the PD ("driven” Fokker-Planck) were developed
«  broadcast of a few control signals and cross-validated )
(switching [stochastic] rates, temperature band) *  Ensemble C:)ntrol Scheme ("second
«  probability distribution (PD) over states (temperature, +/-) quantization”= Bellman-Hamilton-Jacobi
is the control variable approach for PD) is formulated ... testing.

© @D
Virtual generator =Aggregator output

™ SO request & Actual

Broadcast control ((( )))
decisions to TCLs

ON/ OFF

’J - ’| 2 ﬁJ L
1 2 3 4 5 4 0:: ) ‘é G§
Tens of Secs-Mins-to-Hours =0 =) =)

Gigawatts

Heating
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Fault-Induced Delayed Voltage Recovery

FIDVR Event (Nerc Rreport)

CAPACITORS OFF

Slide 19

e a) N
g 5 Challenges: O— ——— - —
. « Describe FIDVR quantitatively ¥ ! v
g & TN (s « Learn to detect it fast @ @ @
5 « Predict if a developing event will or -, = -
g will not lead to recovery? Cascade? b W @
S “ + Develop minimal preventive VO 6 V(L)
emergency controls -+ —_——
20Sec. Time E— l l p(Z) l
Example of a Small Fault — feeder is partially stalled (Movie Small Fault)
a9
Results: 08l| mmgrvohe e
y Lt m— e —— « Reduced PDE model was developed 30 T4 I
i gl 1| gl | . y9  ——: | - Distributed Hysteretic behavior was UO
I=—Smmt N eSS s 3 described 5o
dh e W mor e G mm —r e T e » Effects of disorder and stochasticity ) 9
(a) (b) (c) (d) were analyzed T B
votage

» Effect of cascading from one feeder to

Work in progress:

* Preventive/lemergency control

» Effects of other devices (controlled or not)

another and possibly further to transm.
was investigated

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
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Optimal Distributed Control of Reactive Power via ADMM

- ] j+1 n
mmn I I I mmEm I ’
P, +1Q, P +iQ; P, +iQ, P, +iQ,, P, +iQ,
+1qj .
4
(e) _ ie) (c) reactive control of
X - —(
pJ pJ qJ j-th PV inverter
n
j-th PV-inverter - ﬂ ( ‘E’)Z <q(3) < ﬂS (p(_g))z
reactive capability J
Results:

» The developed control (based on the LinDistFlow
representation of the Power Flows in distribution is
 Distributed (local measurements
+ communications with neighbors)
« Efficient = implemented via powerful ADMM)
(Alternative Direction Method of Multipliers

Operated by Los Alamos National Security, LLC for the U.S. Department of Energ

Challenges:
» Develop algorithm to control voltage and losses in distribution
* Do it using/exploring new degree of freedom

= reactive capabilities of inverters

0.3

0.25

[

0.2

Q.15

e -

0.1

b3

0.05

P
[
[
[+

ADMM-V
n—1
. T PJQ _|_ Q?
o min E Pi——

0o Cane 7 g POV =T Y2 = Losses
04 o 7=0 J
b _ s.t. Power Flow Equations

1000 2000 3000

Yi=1,....n

Case |
====Case2
====Case3
Case 4
=== Case 6

UNCLASSIFIED

: Ilelr?uinn _2“- N -:; ] 0 q (()‘) < \/82 _ (p (Q') ) 2
performance K J = J J

(1 . 6)2V02 < ij < (1 4 6)2V2

0

Case | Loss’ Loss’
1 0.834 0.845 . .. . . . . .
> | ootl oo1s Validated on realistic distribution circuits
30| 0847 0.800 Case | Nodes PV-pen ploax pl® Smax
4 0954 0962 1 100 100% 4 kW TkW  1.1kW
6 | 0700 0.771 2 100 50% 4 kW 1kW 1.1 kW
local vs alobal 3 250 50% 25kW  1kW  2.2KkW
9 4 250 50% 1 kW 2kW 22 kW
5 200 100% 3.75kW 0kW  22kW
6 150 85% 4 kW 0.9 kW 1.1 kW
7 150 70% 2 kW 6.5 kW 10 kW




Resilient Distribution Systems (Bent, Backhaus, Yamangil, Nagarajan)
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Goal: Withstand the initial Impact of large-
scale disruptions

Develop tools, methodologies, and algorithms to enable
the design of resilient distribution systems, using

. Asset hardening
. System expansion by adding new:

. Lines/circuit segments e

. Switching Sty

. Microgrid facilities

. Microgrid generation capacity =
. Binary decisions, mixed-integer programming s:w mmzw o:ws”:v-:"wsouo R

problem
Model Algorithm
Given a graph G = (V. E) where V and E corresponds Relaxations

to node based and edge based upgrades,
respectively, and S a set of disaster scenarios, we
want to find:

min  Budget(G)

st. GCG
T, CG Vses§
T, € OperatingConditions(G) Vses§
CriticalDemand(T;) > MinCriticalDemand s € S
TotalDemand(T;) > MinTotalDemand VseS

A simplified model

1st stage:
construction
variables

2nd stage:
assets in use

Block
diagonal
structure:
coupling
variables.

LinDistFlow:
3-phase
unbalanced
AC power flow
——

\ g

/

Scenario-based
Decomposition

—_—

3

Master
Variable
Neighbor

Search

Scenarios

CPLEX

Rural
k2l5ﬂ
2000
2350
2%00
2250
2200
2150
infff
Maoso L.
o 3 " 1
D - 095
am“a‘be/c“ . — dserved
rcuit” ~ 2 . Loa
cuit iIeM 085 Crltlcal

Damﬂ{;é/el~ - “oss ved
G .08 - S

Ircuit ~ os

Mile 108

Observations

- Rural networks require larger resilience
budgets/MW served.

- Microgrids favored over
hardened lines

- Urban budget is insensitive to critical
load requirements

- Minimal hardening of lines
achieves resilience goa

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA
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« Machine Learning for Transmission Grid
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Machine Learning for the Transmission Grid: D. Deka, S. Backhaus, MC +
Ambient Stage work in progress

Key Ideas
 Temporal scale separation:
slow (tens of mins) vs fast (tens of secs)
* Learning stochastic ODEs — generalized
stochastic swing equations
e Spatial aggregation —incorporating PDEs
* Green function approach (extending
Backhaus & Liu 2011 beyond
detailed balance)

Learn

* Inertia, damping for generators

* Key parameters for (aggregated) loads (state
estimation)

e Statistics of spatio-temporal fluctuations
(statistical state estimation)

e Critical wave-modes (speed of propagation,
damping)

POWER
STATION

Challenges

e Limited measurements

* Incorporating PMU with SCADA

* On-line requirements,

e.g. need linear scaling algorithms

UNCLASSIFIED AN
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Machine Learning for the Transmission Grid: D. Deka, S. Backhaus, MC +

Detection & Mitigation of Frequency Events =~ work in progress
N AR S g

Learn ‘ A o :

* Detect, localize & size frequency events BEL R, e
in almost real time, utilizing # ' | dy
ambient state estimation

Challenges

* Spatio-temporaly optimal, fast measurements

* Have a fast predictive power —is an extra
control needed? when? where?

- N w = [

TRANSMISSION

STATION NETWORKS
Generates electricity. Transports electricity Transports electricity to
Key I d e a s over long distances. its final destination.

 Modeling: electro-mechanical waves over e
1d+ and/or 2d aggregated media, u ‘ d
forerunner (shortest path), interference .
pattern L .

M226 +19,0 = D326 + A8(r — 10)8(x —xo)

Los Alamos
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Machine Learning for the Transmission Grid: GMLC 2.0 proposal
in collaboration with

Industry-grade Implementation LBNL. PNNL. Columbia U
Goal:
* Develop data aided architecture ey 0
« Database of past events L ™
* Combine PMU with SCADA + (aggregated) uPMU -1 AN
ML engine improvements
(ambient)
v Grid-informed ML Analysis (just discussed) and /
New Tools (advanced visualization, events I f oetection
detection) VL ene | b FRAT
engine events sk i
v’ Validation against and developing industry (frequency Sl
event) | [localization &
Sta n d d rd S : time-stamping]
- Principal Component Analysis S T _—

almost-real-time tools

|
[aggregated] L [seconds] _ _

- Existing software (PPMV, FRAT)
v Optimal sizing/sampling of PMUs
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« Graphical Models & New Physics/Grid Informed ML-tools
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01/18-22/16

cnls.lanl.gov/machinelearning

o
LOS Aamos .-

fl

A0l
[ L et N
oSl B Santa Fe

S—.a s

PHYSICS INFORMED MACHINE LEARNING
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Graphical Models for Power Systems y
(and beyond)

fik
o—l—©

auxiliary
graph

3-bus Power System
v-voltage
s-(apparent) power = (v, s7) Xjk = (Vjokr Sjok)

exogenous nodal
C\ a€ (jkLj-kk—-jk->Ll-kj->L1-)) statistics
l_;\

13 (63 %0 %50) = 108, ik + 570) * 1V, Dyt V1) *PrOD(s))

joint probability
distribution
5 (5t 301) = 1 (5 vyt (PEE2E) ) w1 (10, vy (224) ) P(X)~ [1a fa(xa)

| J
[
power flows

e.g. opens it up

for new

Universal formulations for all statistical objects of Interest: Machine Learning +

« Marginal Probability of voltage at a node - P(vj):Zx\,,],P(x) _
* Most probable load/wind at a node [instanton] solutions
keeping voltages within a domain - argmaxs; Zx\(sj) P(xX)y epom,

» Stochastic Optimum Power Flows (CC-, robust-) + dynamic (multi-stage) + planning ++
* Allows to incorporate multiple “complications”

- Any deterministic constraints (limits, inequalities), e.g. expressing feasibility
- Any mixed (discrete/continuous) variables, e.g. switching

“ Los Alamos
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Complexity of Learning: Easy vs Hard x;

x]’_>k f}k
* Direct Problem — Statistical Inference ® 'I ®
(marginal, partition function, ML) agf;:;:y

* Inverse Problem — Learning
(graphs & factors) from samples

joint probability
distribution

P(X)~ Ha fa (xa)

S — e —

* New Story (2015) — Don't follow the sufficient statistics path
* Focus on Sample and Computational Complexity of finite GM Learning
» Provably efficient “local” optimization schemes (binary, pair-wise GM)
« based on conditioning” to vicinity of a local variable
[Bressler 2015]
» based on ““screening” interaction through an accurate choice
of the optimization cost [M. Vuffray, A. Lokhov, S. Misra, MC 2016]
» generalizable — applies directly to an arbitrary GM 05 Alamo
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Summary & Path Forward

« ML for distribution — PF-aware spanning tree algorithm to learn structure
(forest) and correlations of loads

« ML for transmission — two-state on-line learning — ambient + emergency
[learning parameters of ODEs, model reduction, waves]

«  Graphical Models — proper language for variety of stochastic grid

problems, e.g. related to learning.

— Recent progress in GM learning -light, distributed, provably exact schemes — applies
naturally to the grid-specific (and other physical network-specific) ML problems.

— New relaxation ideas based on adaptive Linear Programming — Generalized Belief
Propagation schemes — complementary to “standard” relaxations for OPF & related
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M. Chertkov

M. Vuffray =~ H. Nagarajan  C. Borraz-Sanchez  A. Lokhov E. Yamangil
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Back to main presentation

The Ising Model Learning Problem

(01(1), e 015,1)) Reconstruct graph and

Generate M i.i.d. samples

of binary sequences I]:> : : W:> couplings with high

(U(M) G(M)) probability
,U(O-l, ...,O'N) o 1_[ exp(]ijo-io-j) 1 0y
(i,j)eE

A
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Back to main presentation

Learning is Easy in Theory & Practice

N
Number of variables: N Maximum node degree: d
Number of samples: M Coupling intensity: Jin < |]l-j| < Jmax
J
-

. eC1dJmax 2 ) eC1d)max
Complexity: exp (}T)N logN  Samples Required: exp e log N
\_ J
s » N

8dJ 8
Complexity: ——— Sy VE log N Samples Required: ]—mxlogN
mm min
N J

We develop new model estimators: (Regularized) Interaction Screening Estimators

Bresler (2015)
Structure Learning

Vuffray et al. (2016)
Structure + Parameter
Learning

They are consistent estimators for all graphical models (Continuous variables, general interactions, etc...)

Provably optimal on arbitrary Ising Models, distributed

“¢ Los Alamos
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Back to main presentation

The Screening Estimator(s)

Number of samples: oo Number of samples: M
‘ N - ™
1 k) (k
fu(0) = <1_[ eXp(—quO'jO'u)> fi'(6) = M z 1_[ exp (—Hqu'j( )O-j( ))
j#u k=1,.,M j#u
Ju = argmin £,(6) ji = argmin £(8) + 2y ll61l;
\ Y, \ .

Regularizer reduces # of samples required:
O(NInN) — O(InN)
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